The all-in-one solution for 3D research and the home of the OrthoGnathicAnalyser.

3DMedX® makes is easy to load, edit and analyse Medical 3D images for research purposes. This software suite enables faster and more organized research

header3

Some of the features

DICOM Reconstructions

The 3D reconstruction feature of 3DMedX® facilitates fast, simple and user-friendly 3D reconstructions using standard DICOM files from (CB)CT-scans or MRI scans. A 3D visual representation can be easily created using a Volume Render. Apart from instant Volume Rendering, it is possible to create a 3D Surface Mesh from the 2D image from a DICOM dataset. Using the MPR view a mask can be selected and altered to the demands of the user and by a simple click, a 3D mesh will be reconstructed. This accurate 3D Surface Mesh enables further image analysis.

Custom workflows

Apart from the standard 3D image analysis tools included the 3DMedX® Software Package, customized workflows can be created according to the wishes and requirements of the user. Especially for research purposes this feature enables the user to create an efficient and user-friendly manner to analyse 3D images and create automated measurement reports. Using the custom workflows feature it is possible to perfom image registrations, anatomical landmark identification, creation of colour coded distance maps between different 3D images and volume measurements. With the custom workflow builder developed in 3DMedX it is easy to create exactly the required analysis tool and efficiently calculate the desired results.

The OrthoGnathicAnalyser

3DMedX® is a perfect software tool to perform objective post-operative evaluation of surgical results based on the available 3D scans of a patient. One successful example of such a tool is the OrthoGnathic Analyser which is available in 3DMedX. This module provides a reproducible tool for the evaluation of orthognathic surgery, making it possible to compare individual results as well as larger patient groups in an objective and time-efficient manner. As most of the analysis tools included in 3DMedX®, the Orthognathic Analyzer is developed in an evidence-based manner. The OrthoGnathic Analyer is described in scientific literature as the most reproducible tool to perform objective 3D evaluation of surgical results in orthognathic surgery.

Research

Citation style 3DMedX®: 3DMedX® (v1.2.38.1), 3D Lab Radboudumc, Nijmegen

Ho, J. P. T. F., Schreurs, R., Baan, F., de Lange, J., & Becking, A. G. (2020). Splintless orthognathic surgery in edentulous patients—a pilot study. International Journal of Oral and Maxillofacial Surgery, 49(5), 587–594. https://doi.org/10.1016/j.ijom.2019.08.022

Baan, F., Bruggink, R., Nijsink, J., Maal, T. J. J., & Ongkosuwito, E. M. (2020). Fusion of intra-oral scans in cone-beam computed tomography scans. Clinical Oral Investigations, 77–85. https://doi.org/10.1007/s00784-020-03336-y

de Gouyon Matignon de Pontouraude, M. A., Von den Hoff, J. W., Baan, F., Bruggink, R., Bloemen, M., Bronkhorst, E. M., & Ongkosuwito, E. M. (2021). Highly variable rate of orthodontic tooth movement measured by a novel 3D method correlates with gingival inflammation. Clinical Oral Investigations, 25(4), 1945–1952. https://doi.org/10.1007/s00784-020-03502-2

Chen, Y. F., Baan, F., Bruggink, R., Bronkhorst, E., Liao, Y. F., & Ongkosuwito, E. (2020). Three-dimensional characterization of mandibular asymmetry in craniofacial microsomia. Clinical Oral Investigations, 24(12), 4363–4372. https://doi.org/10.1007/s00784-020-03302-8

Baan, F., van Meggelen, E. M., Verhulst, A. C., Bruggink, R., Xi, T., & Maal, T. J. J. (2021). Virtual occlusion in orthognathic surgery. International Journal of Oral and Maxillofacial Surgery, 50(9), 1219–1225. https://doi.org/10.1016/j.ijom.2020.12.006

ter Horst, R., van Weert, H., Loonen, T., Bergé, S., Vinayahalingam, S., Baan, F., … Xi, T. (2021). Three-dimensional virtual planning in mandibular advancement surgery: Soft tissue prediction based on deep learning. Journal of Cranio-Maxillofacial Surgery, 49(9), 775–782. https://doi.org/10.1016/j.jcms.2021.04.001

Baan, F., Sabelis, J. F., Schreurs, R., van de Steeg, G., Xi, T., van Riet, T. C. T., … Maal, T. J. J. (2021). Validation of the OrthoGnathicAnalyser 2.0—3D accuracy assessment tool for bimaxillary surgery and genioplasty. PLoS ONE, 16(1 January), 1–12. https://doi.org/10.1371/journal.pone.0246196

Schreurs, R., Dubois, L., Becking, A. G., & Maal, T. J. J. (2018). Implant-oriented navigation in orbital reconstruction. Part 1: technique and accuracy study. International Journal of Oral and Maxillofacial Surgery, 47(3), 395–402. https://doi.org/10.1016/j.ijom.2017.09.009

Ho, J. P. T. F., Schreurs, R., Baan, F., de Lange, J., & Becking, A. G. (2020). Splintless orthognathic surgery in edentulous patients—a pilot study. International Journal of Oral and Maxillofacial Surgery, 49(5), 587–594. https://doi.org/10.1016/j.ijom.2019.08.022

Schreurs, R., Dubois, L., Ho, J. P. T. F., Klop, C., Beenen, L. F. M., Habets, P. E. M. H., … Maal, T. J. J. (2020). Implant-oriented navigation in orbital reconstruction part II: preclinical cadaver study. International Journal of Oral and Maxillofacial Surgery, 49(5), 678–685. https://doi.org/10.1016/j.ijom.2019.09.009

Arts, E., Nijsink, H., Verhamme, L., Biert, J., Bemelman, M., Brouwers, L., & van Wageningen, B. (2021). The value of 3D reconstructions in determining post-operative reduction in acetabular fractures: a pilot study. European Journal of Trauma and Emergency Surgery, 47(6), 1873–1880. https://doi.org/10.1007/s00068-019-01148-8

Schreurs, R., Dubois, L., Ho, J. T. F., Klop, C., Maal, T. J. J., & Becking, A. G. (2019). An Insertion Instrument for Improved Implant Positioning in Orbital Reconstruction. Journal of Oral and Maxillofacial Surgery, 77(9), e17–e18. https://doi.org/10.1016/j.joms.2019.06.035

Liebregts, J., Baan, F., van Lierop, P., de Koning, M., Bergé, S., Maal, T., & Xi, T. (2019). One-year postoperative skeletal stability of 3D planned bimaxillary osteotomies: maxilla-first versus mandible-first surgery. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-39250-x

Baan, F., de Waard, O., Bruggink, R., Xi, T., Ongkosuwito, E. M., & Maal, T. J. J. (2020). Virtual setup in orthodontics: planning and evaluation. Clinical Oral Investigations, 24(7), 2385–2393. https://doi.org/10.1007/s00784-019-03097-3

Daemen, J. H. T., Loonen, T. G. J., Verhulst, A. C., Maal, T. J. J., Maessen, J. G., Vissers, Y. L. J., … de Loos, E. R. (2021). Three-Dimensional Imaging of the Chest Wall: A Comparison Between Three Different Imaging Systems. Journal of Surgical Research, 259, 332–341. https://doi.org/10.1016/j.jss.2020.09.027

Waard, O. De, Bruggink, R., Baan, F., Reukers, H. A. J., Bronkhorst, E. M., Kuijpers-jagtman, A. M., & Ongkosuwito, E. M. (2022). Operator Performance of the Digital Setup Fabrication for Orthodontic – Orthognathic Treatment : An Explorative Study. Journal of Clinical Medicine, 11(145). https://doi.org/https://doi.org/10.3390/jcm11010145

Beek DM, Baan F, Liebregts J, Bergé S, Maal T, Xi T (2022) Surgical accuracy in 3D planned bimaxillary osteotomies: intraoral scans and plaster casts as digital dentition models. Int J Oral Maxillofac Surg 51:922–928 . https://doi.org/10.1016/j.ijom.2021.11.016

Beek DM, Baan F, Liebregts J, Bergé S, Maal T, Xi T (2022) Reproducibility of Manual Transfer of the Clinical Natural Head Position: Influence on the Soft Tissue and Hard Tissue Position of 3-Dimensional Virtual Surgical Planning. J Oral Maxillofac Surg 80:1505–1510 . https://doi.org/10.1016/j.joms.2022.05.008

Bruggink R, Baan F, Brons S, Loonen TGJ, Kuijpers-Jagtman AM, Maal TJJ, Ongkosuwito EM (2022) A semi-automatic three-dimensional technique using a regionalized facial template enables facial growth assessment in healthy children from 1.5 to 5.0 years of age. PeerJ 10:1–18 . https://doi.org/10.7717/peerj.13281

Markodimitraki LM, ten Harkel TC, Bleys RLAW, Stegeman I, Thomeer HGXM (2022) Cochlear implant positioning and fixation using 3D-printed patient specific surgical guides; a cadaveric study. PLoS One 17:1–12 . https://doi.org/10.1371/journal.pone.0270517

Meulstee JW, Bussink TW, Delye HHK, Xi T, Borstlap WA, Maal TJJ (2022) Surgical guides versus augmented reality to transfer a virtual surgical plan for open cranial vault reconstruction: A pilot study. Adv Oral Maxillofac Surg 8:100334 . https://doi.org/10.1016/j.adoms.2022.100334

van Hooft J, Kielenstijn G, Liebregts J, Baan F, Meijer G, D’haese J, Bronkhorst E, Verhamme L (2022) Intraoral Scanning as an Alternative to Evaluate the Accuracy of Dental Implant Placements in Partially Edentate Situations: A Prospective Clinical Case Series. J Clin Med 11: . https://doi.org/10.3390/jcm11195876

van Luijn R, Baan F, Shaheen E, Bergé S, Politis C, Maal T, Xi T (2022) Three-dimensional analysis of condylar remodeling and skeletal relapse following LeFort-I osteotomy: A one-year follow-up bicenter study. J Cranio-Maxillofacial Surg 50:40–45 . https://doi.org/10.1016/j.jcms.2021.09.021

Waard O De, Baan F, Bruggink R, Bronkhorst EM, Kuijpers-jagtman AM, Ongkosuwito EM (2022) The Prediction Accuracy of Digital Orthodontic Setups for the Orthodontic Phase before Orthognathic Surgery. MDPI 1–13