The all-in-one solution for 3D research and the home of the OrthoGnathicAnalyser.

3DMedX® makes is easy to load, edit and analyse Medical 3D images for research purposes. This software suite enables faster and more organized research

Some of the functions

DICOM Reconstructions

The 3D reconstruction feature of 3DMedX® facilitates fast, simple and user-friendly 3D reconstructions using standard DICOM files from (CB)CT-scans or MRI scans. A 3D visual representation can be easily created using a Volume Render. Apart from instant Volume Rendering, it is possible to create a 3D Surface Mesh from the 2D image from a DICOM dataset. Using the MPR view a mask can be selected and altered to the demands of the user and by a simple click, a 3D mesh will be reconstructed. This accurate 3D Surface Mesh enables further image analysis.

Custom workflows

Apart from the standard 3D image analysis tools included the 3DMedX® Software Package, customized workflows can be created according to the wishes and requirements of the user. Especially for research purposes this feature enables the user to create an efficient and user-friendly manner to analyse 3D images and create automated measurement reports. Using the custom workflows feature it is possible to perfom image registrations, anatomical landmark identification, creation of colour coded distance maps between different 3D images and volume measurements. With the custom workflow builder developed in 3DMedX it is easy to create exactly the required analysis tool and efficiently calculate the desired results.

The OrthoGnathicAnalyser

3DMedX® is a perfect software tool to perform objective post-operative evaluation of surgical results based on the available 3D scans of a patient. One successful example of such a tool is the OrthoGnathic Analyser which is available in 3DMedX. This module provides a reproducible tool for the evaluation of orthognathic surgery, making it possible to compare individual results as well as larger patient groups in an objective and time-efficient manner. As most of the analysis tools included in 3DMedX®, the Orthognathic Analyzer is developed in an evidence-based manner. The OrthoGnathic Analyer is described in scientific literature as the most reproducible tool to perform objective 3D evaluation of surgical results in orthognathic surgery.

Research citations

  • Bielevelt, F., Jong, G., van Aalst, J., Maal, T., & Delye, H. (2024). Three-Dimensional Photo Alignment for Craniosynostosis Using Deep Learning Based Sella Turcica Approximation. International Journal of Oral and Maxillofacial Surgery, 52, 111. https://doi.org/10.1016/j.ijom.2023.10.312
  • Chen, Y. F., Baan, F., Bergé, S., Liao, Y. F., Maal, T., & Xi, T. (2024). Facial asymmetry outcome of orthognathic surgery in mild craniofacial microsomia compared to non-syndromic class II asymmetry. Clinical Oral Investigations, 28(9), 1–12. https://doi.org/10.1007/s00784-024-05899-6
  • Hoekstra-van Hout, P. M. J., Hoekstra, J. W. M., Bruggink, R., Bronkhorst, E. M., & Ongkosuwito, E. M. (2024). Direct versus fully digital indirect bracket bonding: a split-mouth randomized clinical trial on accuracy. Clinical Oral Investigations, 28(10), 557. https://doi.org/10.1007/s00784-024-05950-6
  • Chen, Y. H., Baan, F., Bruggink, R., Ko, E. W. C., Bergé, S., & Xi, T. (2024). Clockwise versus counterclockwise rotation in bimaxillary surgery: 3D analysis of facial soft tissue outcomes. Oral and Maxillofacial Surgery, 28(2), 693–703. https://doi.org/10.1007/s10006-023-01196-w
  • Berends, B., Bielevelt, F., Schreurs, R., Vinayahalingam, S., Maal, T., & de Jong, G. (2024). Fully automated landmarking and facial segmentation on 3D photographs. Scientific Reports, 14(1), 1–9. https://doi.org/10.1038/s41598-024-56956-9
  • Schutte, H., Bielevelt, F., Emohamadian, H., Muradin, M. S. M., Bleys, R. L. A. W., & Rosenberg, A. J. W. P. (2024). The Ability to Sustain Facial Expressions. Journal of Craniofacial Surgery, 35(3), 799–803. https://doi.org/10.1097/SCS.0000000000010054
  • Ronde, E. M., de Jong, G. A., Nolte, J. W., Nienhuijs, M. E. L., Bulstrode, N. W., Maal, T. J. J., … Tjaberinga, M. (2024). Three-dimensional facial morphology in patients with craniofacial microsomia and microtia. Plastic and Reconstructive Surgery. https://doi.org/10.1097/PRS.0000000000011831
  • van der Stelt, M., Berends, B., Papenburg, M., Langenhuyzen, T., Maal, T., Brouwers, L., … Leijendekkers, R. (2024). Evaluating the Effectiveness of Transtibial Prosthetic Socket Shape Design Using Artificial Intelligence: A Clinical Comparison With Traditional Plaster Cast Socket Designs. Archives of Physical Medicine and Rehabilitation, 1–8. https://doi.org/10.1016/j.apmr.2024.08.026
  • Schutte, H., Bielevelt, F., Muradin, M. S. M., Bleys, R. L. A. W., & Rosenberg, A. J. W. P. (2024). New method for analysing spatial relationships of facial muscles on MRI: a pilot study. International Journal of Oral and Maxillofacial Surgery, 53(9), 731–738. https://doi.org/10.1016/j.ijom.2024.03.003
  • Beek, D. M., van Vlimmeren, L., Bruggink, R., Pelsma, M., Xi, T., & Nienhuijs, M. (2024). The effect of combined surgery and physiotherapy on the facial asymmetry in patients with congenital muscular torticollis: a retrospective cohort study. International Journal of Oral and Maxillofacial Surgery, (May), 919–924. https://doi.org/10.1016/j.ijom.2024.04.009
  • van Ginkel, L., Dupuis, L., Verhamme, L., Hermans, E., Maal, T. J. J., & Stirler, V. (2024). Three-dimensional imaging of the forearm and hand: A comparison between two 3D imaging systems. PLOS Digital Health, 3(4 April), 1–10. https://doi.org/10.1371/journal.pdig.0000458
  • Boogaard, L. L., Notten, K., Kluivers, K., Van der Wal, S., Maal, T. J. J., & Verhamme, L. (2024). Accuracy of augmented reality-guided needle placement for pulsed radiofrequency treatment of pudendal neuralgia: a pilot study on a phantom model. PeerJ, 12. https://doi.org/10.7717/PEERJ.17127
    • Nijsink, H., Arts, E., Verhamme, L., Biert, J., Bemelman, M., Brouwers, L., & van Wageningen, B. (2023). The value of digital 3D models in evaluating surgical outcomes using the uninjured contralateral acetabulum after acetabular fracture repair. Injury. https://doi.org/10.1016/J.INJURY.2023.02.014
    • S. Vinayahalingam, B. Berends, F. Baan, D. A. Moin, R. van Luijn, S. Bergé, and T. Xi, (2023). “Deep learning for automated segmentation of the temporomandibular joint,” J. Dent., vol. 132, p. 104475, (May 2023), https://doi.org/10.1016/J.JDENT.2023.104475.
    • Markodimitraki, L. M., Harkel, T. C. te., Bennink, E., Stegeman, I., & Thomeer, H. G. X. M. (2023). A monocenter, patient-blinded, randomized, parallel-group, non-inferiority study to compare cochlear implant receiver/stimulator device fixation techniques (COMFIT) with and without drilling in adults eligible for primary cochlear implantation. Trials, 24(1), 1–10. https://doi.org/10.1186/s13063-023-07568-7
    • Kluge, J., Bruggink, R., Pandis, N., Unkovskiy, A., Jost-Brinkmann, P.-G., Kuijpers-Jagtman, A. M., & Bartzela, T. (2023). Longitudinal Three-Dimensional Stereophotogrammetric Growth Analysis in Infants with Unilateral Cleft Lip and Palate from 3 to 12 Months of Age. Journal of Clinical Medicine 2023, Vol. 12, Page 6432, 12(20), 6432. https://doi.org/10.3390/JCM12206432
    • Kregel, M., Xi, T., Verhulst, A., & Nienhuijs, M. (2023). Segmental surgical guides and templates in cranial vault remodelling of craniosynostosis. Advances in Oral and Maxillofacial Surgery, 12, 100457. https://doi.org/10.1016/J.ADOMS.2023.100457
    • Buitenhuis, M. B., Weinberg, F. M., Bielevelt, F., Gilijamse, M., Forouzanfar, T., Speksnijder, C. M., & Rosenberg, A. J. W. P. (2023). Anatomical position of the mandibular condyle after open versus closed treatment of unilateral fractures: A three-dimensional analysis. Journal of Cranio-Maxillofacial Surgery. https://doi.org/10.1016/J.JCMS.2023.09.013
    • Berends, B., Bielevelt, F., Schreurs, R., Vinayahalingam, S., Maal, T., & de Jong, G. (2023). Fully automated landmarking and facial segmentation on 3D photographs. Arxiv. https://arxiv.org/abs/2309.10472v1
    • Krijtenburg, P., Bruintjes, M. H. D., Fütterer, J. J., van de Steeg, G., d’Ancona, F., Scheffer, G. J., Keijzer, C., & Warlé, M. C. (2023). MRI measurement of the effects of moderate and deep neuromuscular blockade on the abdominal working space during laparoscopic surgery, a clinical study. BMC Anesthesiology, 23(1), 238. https://doi.org/10.1186/s12871-023-02201-1
    • Krijt, L. L., Kapetanović, A., Sijmons, W. J. L., Bruggink, R., Baan, F., Bergé, S. J., Noverraz, R. R. M., Xi, T., & Schols, J. G. J. H. (2023). What is the impact of miniscrew-assisted rapid palatal expansion on the midfacial soft tissues? A prospective three-dimensional stereophotogrammetry study. Clinical Oral Investigations, 27(9), 5343–5351. https://doi.org/10.1007/s00784-023-05154-4
    • Ho, J. P. T. F., Zhou, N., van Riet, T. C. T., Schreurs, R., Becking, A. G., & de Lange, J. (2023). Assessment of Surgical Accuracy in Maxillomandibular Advancement Surgery for Obstructive Sleep Apnea: A Preliminary Analysis. Journal of Personalized Medicine, 13(10). https://doi.org/10.3390/jpm13101517
    • Sijmons, W. J. L., Krijt, L. L., Bruggink, R., Ongkosuwito, E. M., & Kuijpers, M. A. R. (2023). Impact of Unilateral Alveolar Bone Grafting on Nasal Volume and Nasolabial Surface: A 3D Analysis. Cleft Palate Craniofacial Journal. https://doi.org/10.1177/10556656231221658
  • Buitenhuis, M. B., Klijn, R. J., Rosenberg, A. J. W. P., Grützner, P. A., & Speksnijder, C. M. (2022). Reliability of 3D Stereophotogrammetry for Measuring Postoperative Facial Swelling. Journal of Clinical Medicine 2022, Vol. 11, Page 7137, 11(23), 7137. https://doi.org/10.3390/JCM11237137
  • Dupuis L, van Ginkel LA, Verhamme LM, Maal TJJ, Hermans E, Stirler VMA (2022) Entry Point Variation in the Osseous Fixation Pathway of the Anterior Column of the Pelvis—A Three-Dimensional Analysis. J Pers Med 12: . https://doi.org/10.3390/jpm12101748
  • van Luijn, R., Baan, F., Shaheen, E., Bergé, S., Politis, C., Maal, T., & Xi, T. (2022). Three-dimensional analysis of condylar remodeling and skeletal relapse following LeFort-I osteotomy: A one-year follow-up bicenter study. Journal of Cranio-Maxillofacial Surgery, 50(1), 40–45. https://doi.org/10.1016/j.jcms.2021.09.021
  • Bruggink, R., Baan, F., Brons, S., Loonen, T. G. J., Kuijpers-Jagtman, A. M., Maal, T. J. J., & Ongkosuwito, E. M. (2022). A semi-automatic three-dimensional technique using a regionalized facial template enables facial growth assessment in healthy children from 1.5 to 5.0 years of age. PeerJ, 10, 1–18. https://doi.org/10.7717/peerj.13281
  • Markodimitraki, L. M., ten Harkel, T. C., Bleys, R. L. A. W., Stegeman, I., & Thomeer, H. G. X. M. (2022). Cochlear implant positioning and fixation using 3D-printed patient specific surgical guides; a cadaveric study. PLoS ONE, 17(7 July), 1–12. https://doi.org/10.1371/journal.pone.0270517
  • van Hooft, J., Kielenstijn, G., Liebregts, J., Baan, F., Meijer, G., D’haese, J., … Verhamme, L. (2022). Intraoral Scanning as an Alternative to Evaluate the Accuracy of Dental Implant Placements in Partially Edentate Situations: A Prospective Clinical Case Series. Journal of Clinical Medicine, 11(19). https://doi.org/10.3390/jcm11195876
  • Beek, D. M., Baan, F., Liebregts, J., Bergé, S., Maal, T., & Xi, T. (2022). Reproducibility of Manual Transfer of the Clinical Natural Head Position: Influence on the Soft Tissue and Hard Tissue Position of 3-Dimensional Virtual Surgical Planning. Journal of Oral and Maxillofacial Surgery, 80(9), 1505–1510. https://doi.org/10.1016/j.joms.2022.05.008
  • Beek, D. M., Baan, F., Liebregts, J., Bergé, S., Maal, T., & Xi, T. (2022). Surgical accuracy in 3D planned bimaxillary osteotomies: intraoral scans and plaster casts as digital dentition models. International Journal of Oral and Maxillofacial Surgery, 51(7), 922–928. https://doi.org/10.1016/j.ijom.2021.11.016
  • Meulstee, J. W., Bussink, T. W., Delye, H. H. K., Xi, T., Borstlap, W. A., & Maal, T. J. J. (2022). Surgical guides versus augmented reality to transfer a virtual surgical plan for open cranial vault reconstruction: A pilot study. Advances in Oral and Maxillofacial Surgery, 8(July), 100334. https://doi.org/10.1016/j.adoms.2022.100334
    Waard, O. De, Baan, F., Bruggink, R., Bronkhorst, E. M., Kuijpers-jagtman, A. M., & Ongkosuwito, E. M. (2022). The Prediction Accuracy of Digital Orthodontic Setups for the Orthodontic Phase before Orthognathic Surgery, 1–13.
  • Waard, O. De, Bruggink, R., Baan, F., Reukers, H. A. J., Bronkhorst, E. M., Kuijpers-jagtman, A. M., & Ongkosuwito, E. M. (2022). Operator Performance of the Digital Setup Fabrication for Orthodontic – Orthognathic Treatment : An Explorative Study. Journal of Clinical Medicine, 11(145). https://doi.org/https://doi.org/10.3390/jcm11010145
  • ter Horst, R., van Weert, H., Loonen, T., Bergé, S., Vinayahalingam, S., Baan, F., … Xi, T. (2021). Three-dimensional virtual planning in mandibular advancement surgery: Soft tissue prediction based on deep learning. Journal of Cranio-Maxillofacial Surgery, 49(9), 775–782. https://doi.org/10.1016/j.jcms.2021.04.001
  • de Gouyon Matignon de Pontouraude, M. A., Von den Hoff, J. W., Baan, F., Bruggink, R., Bloemen, M., Bronkhorst, E. M., & Ongkosuwito, E. M. (2021). Highly variable rate of orthodontic tooth movement measured by a novel 3D method correlates with gingival inflammation. Clinical Oral Investigations, 25(4), 1945–1952. https://doi.org/10.1007/s00784-020-03502-2
  • Baan, F., van Meggelen, E. M., Verhulst, A. C., Bruggink, R., Xi, T., & Maal, T. J. J. (2021). Virtual occlusion in orthognathic surgery. International Journal of Oral and Maxillofacial Surgery, 50(9), 1219–1225. https://doi.org/10.1016/j.ijom.2020.12.006
  • Arts, E., Nijsink, H., Verhamme, L., Biert, J., Bemelman, M., Brouwers, L., & van Wageningen, B. (2021). The value of 3D reconstructions in determining post-operative reduction in acetabular fractures: a pilot study. European Journal of Trauma and Emergency Surgery, 47(6), 1873–1880. https://doi.org/10.1007/s00068-019-01148-8
  • Baan, F., Sabelis, J. F., Schreurs, R., van de Steeg, G., Xi, T., van Riet, T. C. T., … Maal, T. J. J. (2021). Validation of the OrthoGnathicAnalyser 2.0—3D accuracy assessment tool for bimaxillary surgery and genioplasty. PLoS ONE, 16(1 January), 1–12. https://doi.org/10.1371/journal.pone.0246196
  • Daemen, J. H. T., Loonen, T. G. J., Verhulst, A. C., Maal, T. J. J., Maessen, J. G., Vissers, Y. L. J., … de Loos, E. R. (2021). Three-Dimensional Imaging of the Chest Wall: A Comparison Between Three Different Imaging Systems. Journal of Surgical Research, 259, 332–341. https://doi.org/10.1016/j.jss.2020.09.027
  • Chen, Y. F., Baan, F., Bruggink, R., Bronkhorst, E., Liao, Y. F., & Ongkosuwito, E. (2020). Three-dimensional characterization of mandibular asymmetry in craniofacial microsomia. Clinical Oral Investigations, 24(12), 4363–4372. https://doi.org/10.1007/s00784-020-03302-8
  • Baan, F., de Waard, O., Bruggink, R., Xi, T., Ongkosuwito, E. M., & Maal, T. J. J. (2020). Virtual setup in orthodontics: planning and evaluation. Clinical Oral Investigations, 24(7), 2385–2393. https://doi.org/10.1007/s00784-019-03097-3
  • Baan, F., Bruggink, R., Nijsink, J., Maal, T. J. J., & Ongkosuwito, E. M. (2020). Fusion of intra-oral scans in cone-beam computed tomography scans. Clinical Oral Investigations, 77–85. https://doi.org/10.1007/s00784-020-03336-y
  • Schreurs, R., Dubois, L., Ho, J. P. T. F., Klop, C., Beenen, L. F. M., Habets, P. E. M. H., … Maal, T. J. J. (2020). Implant-oriented navigation in orbital reconstruction part II: preclinical cadaver study. International Journal of Oral and Maxillofacial Surgery, 49(5), 678–685. https://doi.org/10.1016/j.ijom.2019.09.009
  • Ho, J. P. T. F., Schreurs, R., Baan, F., de Lange, J., & Becking, A. G. (2020). Splintless orthognathic surgery in edentulous patients - a pilot study. International Journal of Oral and Maxillofacial Surgery, 49(5), 587–594. https://doi.org/10.1016/j.ijom.2019.08.022
  • Liebregts, J., Baan, F., van Lierop, P., de Koning, M., Bergé, S., Maal, T., & Xi, T. (2019). One-year postoperative skeletal stability of 3D planned bimaxillary osteotomies: maxilla-first versus mandible-first surgery. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-39250-x
  • Schreurs, R., Dubois, L., Ho, J. T. F., Klop, C., Maal, T. J. J., & Becking, A. G. (2019). An Insertion Instrument for Improved Implant Positioning in Orbital Reconstruction. Journal of Oral and Maxillofacial Surgery, 77(9), e17–e18. https://doi.org/10.1016/j.joms.2019.06.035
  • Schreurs, R., Dubois, L., Becking, A. G., & Maal, T. J. J. (2018). Implant-oriented navigation in orbital reconstruction. Part 1: technique and accuracy study. International Journal of Oral and Maxillofacial Surgery, 47(3), 395–402. https://doi.org/10.1016/j.ijom.2017.09.009